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Unraveling Thermal Transport Correlated with Atomistic
Structures in Amorphous Gallium Oxide via Machine
Learning Combined with Experiments

Yuanbin Liu, Huili Liang, Lei Yang, Guang Yang, Hongao Yang, Shuang Song,
Zengxia Mei, Gábor Csányi,* and Bingyang Cao*

Thermal transport properties of amorphous materials are crucial for their
emerging applications in energy and electronic devices. However,
understanding and controlling thermal transport in disordered materials
remains an outstanding challenge, owing to the intrinsic limitations of
computational techniques and the lack of physically intuitive descriptors for
complex atomistic structures. Here, it is shown how combining
machine-learning-based models and experimental observations can help to
accurately describe realistic structures, thermal transport properties, and
structure–property maps for disordered materials, which is illustrated by a
practical application on gallium oxide. First, the experimental evidence is
reported to demonstrate that machine-learning interatomic potentials,
generated in a self-guided fashion with minimum quantum-mechanical
computations, enable the accurate modeling of amorphous gallium oxide and
its thermal transport properties. The atomistic simulations then reveal the
microscopic changes in the short-range and medium-range order with density
and elucidate how these changes can reduce localization modes and enhance
coherences’ contribution to heat transport. Finally, a physics-inspired
structural descriptor for disordered phases is proposed, with which the
underlying relationship between structures and thermal conductivities is
predicted in a linear form. This work may shed light on the future accelerated
exploration of thermal transport properties and mechanisms in disordered
functional materials.

1. Introduction

Thermal transport properties of amorphous materials are cru-
cial for their emerging applications in thermoelectric devices,[1]
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phase-change memory devices,[2] flexible
electronics,[3] radiation detectors,[4] artifi-
cial intelligence chips,[5] thermal barrier
coatings,[6] and batteries.[7] For instance,
low vibrational thermal conductivity (𝜅)
in amorphous solids is advantageous to
improve heat-to-electricity conversion ef-
ficiency in thermoelectric applications or
sensitivity in gamma-ray detectors, but on
the contrary, it may lead to serious heat dis-
sipation problems for next-generation elec-
tronics or batteries where a large amount
of Joule heat is generated. Clearly, these
various technological aspects have triggered
immense interest in accurately describing,
understanding, and ultimately controlling
thermal transport in amorphous materials.

Heat in nonmetallic crystals is mainly
carried by phonons and thermal resistance
arises from phonon scattering, while the
absence of periodicity makes thermal be-
haviors in amorphous solids quite differ-
ent by the strong localization of vibra-
tional modes and the suppression of vi-
brational scattering length scales. To date,
tremendous progress has been made in
the theoretical formalism for describing
heat conduction in disordered phases by
explicitly considering off-diagonal terms

of the heat current operator.[8] The landmark theoretical frame-
works include the Allen–Feldman (AF) theory[9] and the more
recently developed unified theory[8] as well as the quasi-
harmonic Green–Kubo method.[10] Their accuracy, thanks to the
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development of powerful computer simulations, has been high-
lighted in some amorphous solids[11] or glass-like crystals with
strong anharmonicity.[8,12]

Despite significant advances in theoretical formalisms, the
complete understanding of heat conduction mechanisms in
amorphous materials is still elusive because there remain notable
challenges to the accurate modeling of disordered systems. For
almost the last three decades, molecular dynamics (MD) simula-
tions, based on either density functional theory (DFT)[13] or clas-
sical force fields, have long been the central approach for model-
ing and understanding materials. Generally, the realistic mod-
eling of amorphous materials requires long simulation times
to reach experimentally relevant cooling rates (e.g., 1011 K s−1

for a-Si[14]) and large system sizes to ensure statistical reproduc-
tion of medium-range order.[14,15] On the one hand, although
DFT–MD can correctly capture the bonding and structural sub-
tleties of amorphous matter with quantum-mechanical accuracy,
the limited system sizes (a few hundred atoms) and time scales
(a few tens of picoseconds) in DFT–MD simulations are inac-
cessible to the above modeling requirements due to formidable
computational cost. On the other hand, empirically parameter-
ized force fields are significantly cheaper than DFT, granting ac-
cess to larger system sizes (up to millions of atoms) and longer
timescales (up to 1000 ns). Nevertheless, their relatively poor pre-
dictive power and transferability have been identified in many
studies.[15b,16] Thus, the lack of reliable interatomic potentials has
been the biggest obstacle in the realistic modeling of thermal
transport in disordered systems.

Recently, machine learning (ML) techniques are emerging as
a powerful tool to create a new generation of interatomic po-
tentials by directly mapping the relationship between atomistic
configurations and energies from a suitably chosen ensemble of
quantum-mechanically computed reference data.[17] With com-
parable accuracy to DFT, but with linear scaling behavior in com-
putational efficiency, ML interatomic potentials promise to ad-
dress the aforementioned challenges in materials modeling. The
emergent applications of ML potentials have enabled the un-
precedented understanding of atomistic structures of a number
of disordered materials, such as amorphous carbon (a-C),[16a,18]

silicon (a-Si),[14,15b,16b] phosphorus (a-P),[7a] hafnium dioxide
(a-HfO2),[19] and chalcogenides (e.g., a-GeTe, a-Ge2Sb2Te5).[15a,20]

In spite of the above progress, our knowledge regarding thermal
transport in amorphous materials is still limited compared with
crystalline materials.[21] Specifically, the following critical prob-
lems remain unexplored:

i. How can a high-fidelity ML potential be generated effectively
at a low cost to accurately describe the thermal transport
properties of amorphous materials?

ii. How does heat conduction change across different topologi-
cal network regimes? What are the underlying mechanisms?

iii. How can the relationship between amorphous structures and
thermal conductivities be described quantitively in terms of
materials informatics?

Problem (i) arises from the large chemical space of disordered
phases, which requires ML potentials to be flexible and general
enough for a wide range of configurations. This poses a major
challenge to efficiently sample training data, set appropriate reg-

ularization (to avoid overfitting), and find the best hyperparam-
eters. Problem (ii) is the key to the complete understanding of
nanoscale heat conduction mechanisms in disordered phases.
Problem (iii) has always been a challenging bottleneck in design-
ing functional materials with superb thermal properties (e.g., ul-
tralow 𝜅 materials for thermoelectric devices or relatively high 𝜅

materials for electronic cooling). The challenge arises from the
construction of a suitable descriptor (or fingerprint) for complex
amorphous networks, which needs to sufficiently capture the
feature of complex chemical environments and satisfy the fun-
damental physical requirements: smoothness and invariance to
translation, rotation, and permutation.

To shed light on these problems, we report a combined ML-
driven atomistic simulations and experimental study on struc-
tural features, thermal transport mechanisms, and structure–
thermal property correlations in a representative amorphous
metal oxide system, namely gallium oxide. Here, gallium oxide
is chosen as the model material because of its emerging applica-
tions in next-generation high-power and flexible electronics,[4,22]

where the thermal properties of gallium oxide are critical to the
reliable operation of devices but remain unclear hitherto. First,
we introduce a powerful ML-based Gaussian approximation po-
tential (GAP)[23] for gallium oxide systems, which can describe
a broad range of bulk allotropes, including liquid, amorphous,
and crystalline phases. We show how a first-principles reference
database and the data-effective GAP model can be constructed
through iterative random structure searching and fitting in a
largely automated fashion to minimize human assistance. Sys-
tematical experiments on the structural and thermal transport
properties of amorphous gallium oxide are carried out to vali-
date the overall capability of the GAP model. We then perform
a bunch of GAP-driven simulations to explore the changes in
the short- and medium-range structural order from low- to high-
density regions of amorphous and stoichiometric gallium oxide
(a-Ga2O3). A comprehensive investigation is followed to eluci-
date how atomistic structures and thermal transport properties
are connected. Finally, we develop a physics-inspired descriptor
for arbitrary amorphous materials, with which the quantitative
relationship between structure and thermal conductivity in a-
GaOx under both stoichiometric (x = 1.5) and non-stoichiometric
(x ≠ 1.5) conditions is successfully revealed. Our work exempli-
fies how ML-driven modeling can help the challenging study of
thermal transport in disordered functional materials. The find-
ings in this work, for example, the descriptor of amorphous struc-
tures or data-efficient workflow to generate GAP for disordered
materials, can be readily extended to other systems of interest.

2. Results and Discussion

2.1. Thermal Conductivities

To provide fundamental data for the structures and thermal prop-
erties of amorphous gallium oxide, we first deposit the thin films
of a-Ga2O3 on silicon by radio frequency magnetron sputtering
technique at room temperature (see Experimental Section for
more details). We used various spectroscopy techniques includ-
ing scanning transmission electron microscopy (STEM), energy-
dispersive X-ray spectroscopy (EDS), X-ray reflection spectra
(XRR), and X-ray diffraction (XRD) to characterize the film
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Figure 1. STEM–EDS characterizations of the a-Ga2O3 thin film which is fabricated by the reactive radio frequency magnetron sputtering process.
a) HAADF-STEM image showing the structure of an experimental sample and the film thickness of the a-Ga2O3 layer. b) HAADF-STEM image showing
the atomistic structures near the heterogeneous interface from the region highlighted by the red box in (a). The two insets in (b) show the electron
diffraction pattern of a-Ga2O3 and Si from individual layers shown in the cross section. c,d) Ga-Si and O-Si EDS profiles. The elemental map indicates
the existence of the SiOx interlayer between the a-Ga2O3 film and the Si substrate.

thickness, chemical compositions, density, and structures respec-
tively. Figure 1a shows a high-angle annular dark-field (HAADF)-
STEM image for the cross-sectional profile of the sample. The
a-Ga2O3 film thickness is measured as 498.9 nm. Figure 1b fur-
ther shows the atomistic structures near the heterogeneous in-
terface between the a-Ga2O3 film and the silicon substrate at
2 nm resolution. It is solidly evidenced by electron diffraction pat-
terns (inset in Figure 1b) that the amorphous phase of Ga2O3 is
formed. The EDS mapping (Figure 1c,d) reveals a ≈2 nm SiOx
interface layer formed between a-Ga2O3 and silicon. The forma-
tion of this SiOx layer can be attributed to the chemical bonding
of interfacial oxygen with silicon. The above STEM-EDS charac-
terizations reflect the high quality of our sample. Furthermore,
the density of a-Ga2O3 film is measured as 4.78 g cm−3 by the
extracted values from XRR (Figure S1, Supporting Information),
which is consistent with the previous experimental data.[24] The

X-ray structure factor of a-Ga2O3 is extracted from the XRD data
(Figure S2, Supporting Information), which will be used later to
validate the quality of our GAP-generated structures.

The temperature-dependent thermal conductivity of a-Ga2O3
is then measured by the three-sensor 3𝜔–2𝜔 method (schematic
in Figure 2a),[25] an electrical technique to heat the sample sur-
face and detect the corresponding temperature response by de-
signed metal strips,[26] enabling the simultaneous extraction of
thermal conductivities of both film and substrate as well as their
thermal boundary resistance. Our measurement is demonstrated
to have high sensitivity to thermal conductivities of both a-Ga2O3
and silicon (Figure S4, Supporting Information). It is noted that
although a-Ga2O3 thin film is used here, its 498.9 nm thickness
is large enough to ignore the size effect on thermal conductivity,
which will be discussed later. Finally, the experimental thermal
conductivity of a-Ga2O3 from 200 to 400 K is depicted in Figure 2b
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Figure 2. Thermal conductivity of a-Ga2O3. a) Illustration of the three-sensor 3𝜔–2𝜔 measurement method. The detailed measurement circuit and
measurement sensitivity are available (Figures S3, S4, Supporting Information). b) Three-sensor 3𝜔–2𝜔 measured the thermal conductivity of a-Ga2O3
in comparison with values from ML-driven nonequilibrium molecular dynamics simulations, AF theory, and UF theory calculations. The dark cyan squares
denote temperature-dependent thermal conductivities of populations, which are obtained from the UF theory calculations (see Equation (9)). The error
bars for the three-sensor 3𝜔–2𝜔 data represent one standard deviation and are obtained via the analysis of uncertainty propagation combining numerical
and systematic errors. The lattice thermal conductivity of 𝛽-Ga2O3 is obtained from the literature.[22a]

with circles. The values of 𝜅 are from 0.86 ± 0.17 W m−1 K−1 at
200 K to 1.31 ± 0.26 W m−1 K−1 at 400 K, here under Debye tem-
perature.

To theoretically capture the atomistic structures (inaccessible
to experiments) and 𝜅 of amorphous gallium oxide, we start
by constructing an accurate and transferrable ML-based GAP
model. Given the phase space of disordered and amorphous
solids is much larger than that of crystals, ML potentials are re-
quired to be flexible and general enough for the exploration tasks
in the structure prediction of disordered phases. Aside from the
regression task itself and structural representations, the gener-
ality of ML potentials largely depends on the diversity of atomic
configurations in the reference database. Usually, relevant atom-
istic reference data are manfully chosen and tuned when fitting
ML potentials, which inevitably requires both considerable do-
main experience and human efforts. We here use an inherently
different way to generate reference data and construct the GAP
model through iterative random structure searching (RSS) and
fitting.[27] GAP-RSS is a self-guided learning method that enables
the largely automated sampling of the few most relevant and di-
verse structures at each iterative step by a Boltzmann-biased flat
histogram and leverage-score CUR.[28] Moreover, our GAP-RSS
generated structures contain different compositions of GaOx bi-
nary alloys, which substantially expands the applicability of our
model to non-stoichiometric oxides. As a result, the GAP-RSS
structures can widely spread over the disordered phase space,
including from initially randomized unstable regions to relaxed
low-energy regions. In addition, the search process only involves
a relatively small number of single-point DFT calculations, lead-
ing to low computational costs. Our final ML model from the
GAP-RSS iterations shows the required generality and accuracy
in the reproduction of DFT potential surfaces for the desired dis-
ordered regions of configuration space, with a low root mean
square error (RMSE) of 0.017 eV atom−1 for predicted energies in
the testing datasets. The RMSEs of predicted forces in the testing
datasets are 0.32 eV Å−1 for the Ga atom and 0.26 eV Å−1 for the
O atom.

We now turn to evaluate the performance of the GAP model
in the modeling 𝜅 of amorphous gallium oxide. First, we adopt
the experimental density of 4.78 g cm−3 to generate the a-Ga2O3
model by the canonical ensemble (NVT) melt-quench simula-
tions with the LAMMPS package.[29] We then comprehensively
study thermal transport in a-Ga2O3 by the AF theory, the uni-
fied theory, and non-equilibrium molecular dynamics (NEMD),
respectively. It is worth noting that both the AF and unified
theories consider the quantum effect of vibrations at low tem-
peratures, namely energy hopping between localized vibrational
eigenstates. The difference is that the AF theory intensively treats
the off-diagonal contributions to 𝜅 from the heat-flux operator[30]

under harmonic approximation, while the recently developed
unified theory comprehensively accounts for both diagonal and
off-diagonal contributions, as well as high-order anharmonic-
ity. The diagonal terms correspond to the propagation of vibra-
tional modes, referred to as populations,[8] while the off-diagonal
terms originate from the wave-like tunneling and loss of co-
herence between different vibrational eigenstates, referred to as
coherences.[8] In general, coherences’ contribution to 𝜅 is negli-
gible in simple crystals, but it would become significant in dis-
ordered materials. Distinct from the AF and unified theories,
MD simulations assume that all the vibrations are fully occu-
pied at any temperature but entirely ignore the quantum effect
of vibrations, leading to the unphysical prediction at low tem-
peratures. Hence, NEMD will be only performed above room
temperature in this work. In the calculations of both AF and
unified theories, the 500-atom as-quenched cell is used, which
mirrors the maximum model size for DFT-quality MD. How-
ever, the 10 000-atom as-quenched cell is adopted in NEMD,
which is far beyond the limit of what is presently possible for
DFT-based MD.

The reasonable agreement between experimental and calcu-
lated 𝜅 (Figure 2b) provides solid evidence for the accuracy and
strength of the ML-based GAP potential in treating challenging
exploration tasks. It is shown that populations’ contribution to 𝜅

is negligible in disordered Ga2O3 and thermal transport is almost
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Figure 3. Structures of a-Ga2O3 at various densities, obtained from melt-quench simulations using the GAP-RSS model. a) Snapshots of 500-atom
models. They are visualized by OVITO.[31] Color mapping indicates coordination numbers, N, with a maximum bond-length cutoff of 2.35 Å. Larger
spheres represent Ga atoms, while smaller spheres represent O atoms. b) Total atomic PDFs, measuring the short-range order in a-Ga2O3. c,d) Average
coordination-number histograms for Ga atom and O atom, respectively. e) ADFs. f) Distribution of shortest-path rings in amorphous and crystalline
phases, which is used to characterize medium-range order in a-Ga2O3. Note that (c,d,f) share the same legends.

entirely driven by coherences, which also proves the weak size
effect of heat transport in a-Ga2O3. Interestingly, the harmonic
AF calculations are comparable to those of the unified theory
over the wide temperature range. It suggests that thermal trans-
port in a-Ga2O3 is strongly influenced by disorder rather than an-
harmonicity. Furthermore, the large difference between thermal
conductivities in both a-Ga2O3 and crystalline 𝛽-Ga2O3 materials
clearly demonstrates the distinct thermal transport mechanisms
between them. Compared with a-Ga2O3, populations become
dominant in heat transport in 𝛽-Ga2O3. The strong localization
of heat carriers makes the thermal conductivity of a-Ga2O3 one
order of magnitude lower than that of 𝛽-Ga2O3 at room tempera-
ture. It is noted that the thermal conductivities predicted from the
UF/AF calculations are lower than those from the NEMD simu-
lations. This is because of the quantum effects below the Debye
temperature.

2.2. Structural Properties

To shed light on the effect of atomistic networks on heat trans-
port, structural properties need to be fully understood. To this
purpose, we carry out a bunch of GAP-driven quench simulations
to generate an ensemble of a-Ga2O3 models at various densities
(Figure 3a). Due to the breaking of long-range translational sym-
metry, the short- and medium-range order has become the most
prominent feature of amorphous structures, which could cru-
cially determine the macroscopic properties of materials. Here,
we identify the short- and medium-range order in the gener-
ated structures by using the four types of quality indicators: to-
tal pair distribution functions (PDFs), coordination numbers, to-
tal angle-distribution functions (ADFs), and statistics of shortest-
path rings. Initially, PDFs are used to measure the short-range
order in a-Ga2O3 networks (Figure 3b). The first PDF peak is
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Figure 4. Vibrational properties and influencing factors. a,b) Thermal conductivity density of states 𝜅𝜔 and scaled cumulative thermal conductivity 𝜅CUM
of a-Ga2O3. c,d) Role of cell volume (V), velocity operator (v), mode linewidth (Γ), and specific heat (C) in thermal transport as density changes. The
system at 4.78 g cm−3 acts as a benchmark for the comparison.

located at ≈1.9 Å and indicates the average bond length of all
kinds of atom pairs. As density increases, a significant phe-
nomenon is that the intensity of the first PDF peak weakens, and
the second PDF peak is blue-shifted for the high-density system
(7.50 g cm−3).

To reveal the local structural characteristics in finer detail, we
evaluate the coordination number distribution using a maximum
bond-length cutoff of 2.35 Å (Figure 3c,d). Generally, the average
coordination numbers of Ga and O atoms gradually increase as
density increases. The most probable coordination numbers of
Ga and O atoms are four and threefold in a-Ga2O3 with lower den-
sity, respectively, while the fraction of five and sixfold coordinated
Ga atoms or fourfold coordinated O atoms is more prominent
in a-Ga2O3 with higher density. A reduced proportion of twofold
coordinated atoms is clearly observed as density increases. As to
crystalline 𝛽-Ga2O3, however, 50% of Ga atoms are four or six-
fold coordinated, while 1/3 and 2/3 O atoms are four and three-
fold coordinated, respectively. It indicates that a-Ga2O3 networks
contain a certain number of coordination defects, for example,
“dangling bonds” and “floating bonds”. The O–Ga–O ADFs of
all simulated models are shown in Figure 3e. Compared with
the low-density system, the high-density one has a sharper peak
in the ADF. As evidenced by the shift of the maximum peak in
the ADF, the proportion of tetrahedral-like environments is re-
duced with density, while the octahedral-like environments be-
come dominant at high-density systems.

Beyond the nearest-neighbor environments, the medium-
range order of a-Ga2O3 is characterized by means of ring
statistics. To this end, Franzblau’s shortest-path algorithm and
ISAACS package[32] are used. We here only discuss even-
membered rings and define a 2n-fold ring as the shortest path

of alternating Ga–O heteropolar bonds. That is, a 2n-fold ring
consists of 2n alternating Ga–O bonds. The quick decay of dis-
tributions for different structural models suggests that the 500-
atom cell is already good to estimate the medium-range structural
features (see Figure 3f). The eightfold ring is the most probable
motif at high densities which is similar to 𝛽-Ga2O3. By contrast,
low-density amorphous structures have higher-order rings con-
sisting of up to 18 atoms. The medium-size rings, eight to twelve-
fold, have the largest relative probabilities to be building blocks
for the amorphous materials. Remarkably, as the density of a-
Ga2O3 increases, its medium-range ordered structure distribu-
tion is closer to that of 𝛽-Ga2O3.

2.3. Thermal Transport Mechanisms

It has been demonstrated that the atomistic structures of a-Ga2O3
strongly depend on density. Here, we proceed to discuss how
density-induced variation in structures affects the thermal prop-
erties of a-Ga2O3. Three representative systems with different
densities, viz. 3.5, 4.78, and 5.68 g cm−3, are chosen for specific
analysis. For a clear visualization, the thermal properties of the
system with the experimental density of 4.78 g cm−3 will act as a
benchmark to compare those of the sparse (3.5 g cm−3) and dense
(5.68 g cm−3) systems.

We adopt the unified theory to calculate the thermal-
conductivity density of states 𝜅𝜔 and cumulative thermal con-
ductivity 𝜅CUM at different densities (Figure 4a,b). Here, 𝜅CUM is
scaled by the total thermal conductivity of the benchmark system
to facilitate the comparisons. It is shown that the total 𝜅 in the
high-density system is larger than that in the low-density system.
The variation in 𝜅 can be linked to the change in local chemical
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environments. As discussed above, increasing the density also in-
creases atomic coordination numbers. This increase in the bond-
ing number per atom will provide additional pathways through
which vibrational modes could interact, leading to a gradual en-
hancement in thermal transport. It is also shown that the low
vibrational modes below 10 THz contribute mostly to the total
𝜅, and the structural variation exerts evident influence on the
mode-wise thermal conductivity in the vibrational regimes ap-
proximately over 3 THz.

We further estimate quantitively the role of four important
macroscopic and microscopic physical factors in thermal trans-
port as density changes, viz. cell volume (V), specific heat (C),
velocity operator (v), and mode linewidth (Γ). For example, we
calculate the contribution of cell volume to the variation in 𝜅 by

Δ𝜅V =
𝜅(V, vb,Γb, Cb) − 𝜅(Vb, vb,Γb, Cb)

𝜅(Vb, vb,Γb, Cb)
(1)

where the superscript b indicates that the value of the corre-
sponding factor is taken from the benchmark system. As pre-
viously assumed, the benchmark system is chosen as the one
at 4.78 g cm−3. The contributions from the other three factors
can be evaluated by analogy. In addition to total 𝜅, the variation
in coherences’ thermal conductivity 𝜅C and populations’ ther-
mal conductivity 𝜅P under the four factors is also established
(Figure 4c,d). It is shown that cell volume plays the most signif-
icant role in changing 𝜅 among the four factors. Indeed, density
directly changes cell volume due to their intrinsic inversely pro-
portional relationship. Aside from cell volume, the velocity op-
erator is also identified as a relatively important factor affecting
Δ𝜅. The off-diagonal terms of the velocity operator can reflect the
coherences’ contribution to 𝜅. It indicates the coupling strength
of vibrational modes at high density is larger than that at low
density. Compared with the former two factors, the influence of
linewidth and specific heat on Δ𝜅 is much less important, which
again indicates the weak anharmonicity in a-Ga2O3. The overall
results here provide concrete evidence for the dominant contri-
bution from coherences to 𝜅 at different densities.

To gain deep insight into the mechanism of heat transport,
using the unified theory, we carry out a vibrational mode analysis
to explore the localization and diffusivity of modes, respectively.
The inverse participation ratio (IPR) is an effective parameter to
quantitively describe the localization extent for each mode, given
by

IPR =

∑N
i=1

(∑3
𝛼=1 u2

i𝛼

)2

(∑N
i=1

(∑3
𝛼=1 u2

i𝛼

))2
(2)

where N is the total number of atoms and ui𝛼 is the eigenvector
component for atom i in 𝛼 direction. For example, IPR equals
1 when a mode is fully localized on a single atomic site, while
IPR equals 1/N when a fully delocalized mode spans all atoms.
In principle, it is impossible to define a specific IPR to distin-
guish localized modes, but a number of previous studies have
reasonably defined localized modes as those with a participation
ratio less than 0.2 (corresponding to IPR ≥ 0.01 for a 500-atom
supercell).[11b,33] We here follow this convention to define local-

ized vibrational modes. With regard to mode diffusivities D, it
describes the rate at which the heat carried by a vibration dif-
fuses, which is extracted by recasting thermal conductivity as
𝜅 = 1

VNq

∑
Cq,sDq,s (see Experimental Section for more details).

The IPR spectra in a 500-atom supercell of a-Ga2O3 with dif-
ferent densities are shown in Figure 5a–c, while the correspond-
ing mode diffusivities are plotted in Figure 5d–f. According to
our IPR calculations, localized modes mainly stem from high-
frequency regions. It is shown that ≈32.5% of the vibrational
modes are localized for the system at 3.50 g cm−3, which indi-
cates that a large part of modes is inactive in transferring heat,
resulting in a low thermal conductivity. As density increases, the
percentage of localized modes gradually decreases to ≈10%. This
suggests that more vibrational modes become delocalized with
density. Moreover, the increase in mode diffusivities is clearly ob-
served with density. The over-constrained bonding network in the
high-density system could be responsible for the large percentage
of delocalized modes and relatively high mode diffusivities, lead-
ing to the enhancement in heat transport.

2.4. Structure–Thermal-Property Correlations

It has become clear that the thermal properties of disordered ma-
terials are tied to the corresponding atomistic networks. Along
with the above-discussed density, the composition of the binary
alloys also plays an important role in thermal energy transport in
disordered materials by altering the network connectivity, chem-
ical bonding, and vibrational mode localization.[11b,34] Arguably,
tuning network topology through varying densities or compo-
sitions could be a promising method for the rational design of
amorphous materials with superb thermal properties. For the ac-
celerated screening of promising amorphous materials from the
high-dimensional chemical space, as usually done in materials
informatics, it is essential to obtain the quantitative structure–
property relationship. Here, we aim to resolve the construction of
structure–thermal property relationships for amorphous materi-
als by finding suitable structure descriptors to map complex topo-
logical networks into a suitable representation which are strongly
correlated with the target physical quantities, for example, 𝜅.

We first evaluate the correlation between the thermal conduc-
tivity of amorphous solids and the two heuristically determined
structural parameters, viz. density and composition ratio. To this
end, we calculate the thermal conductivity of 68 types of addi-
tional a-GaOx cells according to the AF theory which is used
because of its relatively low computational cost and weak an-
harmonicity in a-GaOx. The calculated systems have wide den-
sity and composition ratio distributions, ranging from 3.5 to
6.5 g cm−3 and from 1.1 to 1.7, respectively. Figure 6a reveals
the strong correlation between thermal conductivity and density.
It is again suggested that low thermal conductivities occur in the
most open structures. However, a simple descriptor only using
density cannot explain structure–property relationships in bulks
with various compositions (Figure 6a). This is because density
is insufficient for uniquely characterizing a given amorphous
structure. Consequently, different amorphous structures could
have the same density but distinct bonding and thermal behavior.
Figure 6b indicates the relationship between composition ra-
tio and thermal conductivity. Increasing the heavy element Ga

Adv. Mater. 2023, 35, 2210873 © 2023 Wiley-VCH GmbH2210873 (7 of 13)
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Figure 5. Vibrational mode analysis. a–c) IPR and d–f) mode diffusivity (D) as a function of frequency for a-Ga2O3 at 3.50, 4.78, and 5.68 g cm−3,
respectively. The dash lines in (d–f) denote the maximum diffusivity (1.6 × 10−7 m2 s−1) of high-frequency localized modes.

Figure 6. Structure–thermal conductivity relationship in a-GaOx. a–c) Thermal conductivity as a function of density (a), composition ratio (b), and SSF
(c). The black solid curves are linear fits to the data.

content in the alloy could further suppress thermal conductiv-
ity by localizing more vibrational modes. However, such relation-
ships are highly non-linear, and taking composition ratio as the
only structural feature cannot account for the effect of density on
thermal conductivity. Accordingly, neither density nor composi-
tion ratio is adequate for regressing a structure–property relation
in amorphous solids.

We now turn to a state-of-the-art many-body descriptor known
as “smooth overlap of atomic positions” (SOAP)[35] that has
been successfully applied to fit ML potentials[17c,23,36] and ana-

lyze atomic-scale structures.[37] For a given structure, the average
global SOAP fingerprint is a high-dimensional vector p = {pnn′l}
by considering all components l ≤ lmax and n, n′ ≤ nmax, and each
element reads

pnn′ l =
𝜋

N2

√
8

2l + 1

∑
m

∑
i,j

(
ci

nlm

)∗
cj

n′ lm (3)

where i and j denote atomic species and cnlm corresponds to
the density expansion coefficients. Compared with the used
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 15214095, 2023, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202210873 by T
singhua U

niversity L
ibrary, W

iley O
nline L

ibrary on [15/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advmat.de

Figure 7. PCA maps of amorphous and crystalline gallium oxide configurations using the SOAP fingerprints, colored according to thermal conductivity.
a) First and second principal components. b) First and third principal components.

structural indicators before, viz. PDFs, ADFs, and ring statistics,
which just estimate one aspect of statistical characteristics of net-
works, the SOAP descriptor with a suitable cutoff radius could
take all aspects of short- and medium-range structural environ-
ments into account. Most importantly, SOAP is an inherently
density-sensitive descriptor because the SOAP features are fun-
damentally constructed by the atomic neighborhood density and
power spectrum. Given the strong correlation between thermal
conductivity and density, SOAP promises to be an excellent rep-
resentation of amorphous materials.

To take an insight into the high-dimensional SOAP represen-
tations for different a-GaOx systems and reveal their underly-
ing correlations with 𝜅, an ML-based dimensionality reduction
technique, viz. principal component analysis (PCA),[38] is used
to map each structure to a point in 3D space for visual inspec-
tions. The resulting plot is shown in Figure 7, in which we take
the crystalline 𝛽-Ga2O3 as a reference and encode the species by
symbols and the thermal conductivity by color. The projection
axes (also named “principal components”, PCs) of panels a and
b are formed by the first three eigenvectors of the design ma-
trix in PCA. It can be clearly observed that the amorphous struc-
tures with different motifs are clearly separated on the PCA map
(Figure 7a). A distinction between amorphous and crystalline
phases is also clearly visible, a sign of their fundamental struc-
tural differences (Figure 7b). It is suggested that the SOAP de-
scriptor is leading to groupings of gallium oxides sharing simi-
larities in atomic structures and compositions. The strong hor-
izontal color gradient in Figure 7a indicates that PC1 is essen-
tially equivalent to density, while the vertical color gradient sug-
gests that PC2 is well correlated with amorphous compositions.
Consequently, the structure–thermal conductivity trends can be
subtly identified by the combination of projections of the SOAP
elements on the PC1 and PC2 axes. These results qualitatively re-
veal the high-level interpretability of SOAP in the representation

and 𝜅 prediction of amorphous materials. Nevertheless, given
that the thermal datasets are usually very limited due to high cost,
the quantitative regression of 𝜅 using the full SOAP fingerprint
or its low-dimensional PCA projection is prone to overfitting or
numerical instability.

To circumvent these issues, we attempt to search for a more
suitable SOAP-based microscopic metric to identify the relation-
ship between amorphous structures and thermal conductivity.
From the perspective of atomic length scales, amorphous and
crystalline materials appear similar in the short-range structural
order, and both are assembled by the polyhedral building blocks
(Figure 7b). The major differences in amorphous and crystalline
structures lie in their intermediate and long-range structural or-
der, such as the relative amount, connectivity, and orientation
of different polyhedral units. Such differences in structural net-
works fundamentally change the way of heat transfer from vi-
brational populations in crystalline Ga2O3 to vibrational coher-
ences in amorphous phases. Inspired by this, we develop a robust
SOAP-based metric for describing a-GaOx by quantitatively mea-
suring the structural similarity between amorphous phases and
the reference crystalline counterpart, viz. 𝛽-Ga2O3. More specifi-
cally, we measure the similarity of the chemical environment of
an atom in the amorphous phase to that of an identical atom in
the crystal bulk by using the SOAP descriptor. Accordingly, the
scaled but non-normalized similarity metric of each atomic envi-
ronment in a-GaOx is defined as

qi =
1
𝛾𝜒

max
k∈{1,…,𝜒}

pi ⋅ pj,k (4)

where pi and pj are the SOAP vectors of atom i in the amorphous
phase and identical atom j in crystalline counterparts, 𝜒 denotes
the number of Ga or O atom types in crystal bulk, and 𝛾 is a
scale factor given by max

k∈{1,…,𝜒}
|pj,k| here. For 𝛽-Ga2O3, there are
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two types of Ga atoms (𝜒 = 2) and three types of O atoms (𝜒 = 3).
For an overall comparison of structures, the structural similarity
factor (SSF) is then given by averaging the feature metric of each
atom in the amorphous supercell:

SSF = 1
N

N∑
i=1

qi (5)

Here, a SOAP cutoff of 5.50 Å is used so that the intermediate
length scale beyond the individual building blocks can be mea-
sured.

Having SSF as the unified metric to quantitatively describe
atomistic structures of a-GaOx, we proceed to show how the
structure factor is linked to thermal conductivity. Figure 6c illus-
trates that thermal conductivity is strongly correlated with SSF.
The larger the value of SSF is, the higher the thermal conduc-
tivity is. Using linear fitting, a regression model can be quanti-
tatively derived as 𝜅= 1.09 × SSF + 0.05. Combining with the
mechanism of atomistic structures affecting thermal transport,
such a relationship can be reasonably explained by the physical
intuition of SSF. That is, SSF inherits the sensitivity of the SOAP
descriptor to density and composition. A larger SSF suggests a
denser network that consists of higher average bonding num-
bers and basically dictates the enhancement in the coherences’
contribution to thermal energy transport as discussed above. In
addition, SSF subtly quantifies the similarity of the crystal and
amorphous structures in the medium-range order. The increase
in the SSF values indicates that the medium-range order in amor-
phous solids is closer to that in crystalline counterparts, which
can be clearly verified by the distributions of shortest-path rings
as shown in Figure 3f. More “ordered” medium-range networks
could also contribute to heat transport.

It is worth noting the main difference between SOAP and
SSF. The quantitative fitting of thermal conductivity of amor-
phous materials directly using the high-dimensional SOAP fin-
gerprints usually involves a nonlinear regression process with
multiple parameters and thus requires a large amount of data to
avoid overfitting, while the strong linear relationship between the
single-parameter SSF metric and thermal conductivity can read-
ily circumvent the overfitting issue, especially in the case of small
datasets. Moreover, compared with SSF, the structure–thermal
property mappings obtained with SOAP are difficult to interpret
intuitively. Consequently, SSF enables us to establish a physically
reasonable relationship between structures and thermal conduc-
tivities with a small amount of data to significantly save compu-
tational costs. Such a relationship would facilitate the fast and ac-
curate prediction of thermal conductivity directly from structural
information for amorphous systems and eventually enable the ac-
celerated discovery of functional materials with superb thermal
properties.

3. Conclusions

We have demonstrate that combing machine-learning-based
models and experimental observations can lead to an unprece-
dented level of understanding of atomistic structures, thermal
transport properties, and structure–thermal property correla-
tions for disordered materials, by a practical application on gal-

lium oxide systems. With the GAP-RSS method, we have devel-
oped a powerful ML potential with near quantum-mechanical ac-
curacy for the realistic modeling of a-GaOx. It is shown that the
GAP-RSS method enables the largely automatic generation of a
suitable first-principles database and a flexible ML potential for
disordered materials, remarkably reducing computational costs
and human efforts. Comprehensive experimental observations
on the structures and thermal conductivity of a-Ga2O3 are shown
to be consistent with the computational results from the ML-
driven large-scale MD simulations and different theoretical for-
malisms, validating the overall capability of the ML-driven GAP
model. This is a significant milestone toward the realistic model-
ing of thermal properties of structurally complex functional ma-
terials. It is further demonstrated that the harmonic coupling of
vibrational modes dominates heat conduction in a-Ga2O3 instead
of phonon-like propagation and anharmonicity. Moreover, exten-
sive ML-driven atomistic simulations have been carried out to de-
scribe the variation in the short- and medium-range structural
order from low- to high-density amorphous regions, as well as to
elucidate that the over-constrained bonding network, the forma-
tion of numerous octahedral-like environments, and the decrease
in the heavy element Ga content dictate the enhancement in the
coherences’ contribution to thermal energy transport in a-GaOx.
Finally, we have proposed an effective metric SSF derived from
SOAP to quantify disordered structures by determining the sim-
ilarity between chemical environments of both amorphous and
crystalline phases. It is found that SSF is strongly correlated with
thermal conductivity in a-GaOx and enables the accurate and fast
prediction of thermal conductivity in a physically reasonable way.

The findings of this work would be fundamental to the de-
velopment of thermal management techniques for flexible elec-
tronic devices based on gallium oxide. Looking beyond this appli-
cation, it generally shows the capability of ML models in tackling
realistic problems out of reach for the first-principles methods.
Given the complexity and significance of heat transport in dis-
ordered phases, this work might provide a starting point for the
future accelerated exploration of novel thermal transport proper-
ties and mechanisms in other important disordered materials.

4. Experimental Section
Experimental Approach: The experimental a-Ga2O3 film was deposited

on Si substrates by radio frequency magnetron sputtering at room temper-
ature. The Ga2O3 ceramic target is 5N pure. The Si substrate was ultrason-
ically cleaned in acetone and isopropanol successively and then dried with
pure N2. After cleaning, the Si substrates were immediately loaded into the
growth chamber. Before deposition, a base pressure of ≈3.0× 10−4 Pa was
achieved by turbopump. The sputtering lasted for 90 min in total under a
sputtering power of 60 W and a total pressure of 0.4 Pa in a pure Ar atmo-
sphere. In this work, a-Ga2O3 samples with a fixed density were prepared.
However, it is worth noting that a-Ga2O3 thin films with different densi-
ties could be grown by using pulsed laser deposition in an O2 gas flow and
controlling the deposition rate.[39]

After obtaining the sample, its thermal conductivity was measured by
the 3-sensor 3𝜔–2𝜔method.[25] In the scheme, three parallel metal stripes
with a unified thickness of 100 nm (10 nm Cr/90 nm Au), including two
heaters and one detector, were fabricated through electron beam lithogra-
phy and sputtering on the surface of the sample. Two heaters with different
widths were located on both sides of the detector. Based on the sensi-
tivity analysis, the widths of the two heaters and detector were designed
as 30 μm, 1.5 μm, and 800 nm, while the distances between each heater
and the detector were 20 and 800 nm, respectively (Table S1, Supporting
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Information). The experiment AC/DC currents were generated by Keithley
6221 current sources, while the 1𝜔/2𝜔/3𝜔 voltage signals were captured
by SRS SR830 lock-in amplifiers.

Simulation Approach: Allen–Feldman Theory: The AF theory accounts
for the coherences’ contribution to thermal conductivity in harmonic limit:

𝜅AF = 1
V

∑
i

Ci(𝜔i)
𝜋V2

3ℏ2𝜔2
i

∑
j≠i

|||Sij
|||2𝛿 (𝜔i − 𝜔j

)
(6)

where 𝜔i is the frequency of the ith mode, Ci(𝜔i) is the frequency-
dependent specific heat, 𝛿 is the Dirac delta function, ℏ is the reduced
Planck constant, and Sij is the matrix element of the heat current opera-
tor which measures the thermal coupling between vibrational mode i and j
based on their frequencies and spatial overlap of eigenvectors. The 𝛿 func-
tion is generally obtained by

𝛿(𝜔i − 𝜔j) =
𝜂∕𝜋

(𝜔i − 𝜔j)
2 + 𝜂2

(7)

where 𝜂 is a free broadening factor in the Lorentzian function. Previous
research used several times the mean level spacing of vibrational modes
frequency (Δ𝜔ave) as 𝜂. Here, 10 times of Δ𝜔ave was uniformly used as the
broadening factor in the Lorentzian function to calculate the AF thermal
conductivity. The good agreement between the AF and unified (UF) ther-
mal conductivities indicated the reasonableness of the chosen parameter.

Unified theory. In the unified theory, the total thermal conductivity in-
cludes both the populations’ and coherences’ contributions:

𝜅TOT = 𝜅P + 𝜅C. (8)

Under single-mode approximation, the resulting formula for 𝜅P reads

𝜅P = 1
3VNq

∑
q,s

Cq,sv
2
q,ss

1
Γq,s

. (9)

where Nq is the number of sampled wavevectors, and vq,ss and Γq,s are
the generalized group velocity and linewidth indexed by wavevector q and
branch s, respectively. The coherences’ thermal conductivity is expressed
as

𝜅C = 1
VNq

∑
q,s≠s′

𝜔q,s + 𝜔q,s′

4

(
Cq,s

𝜔q,s
+

Cq,s′

𝜔q,s′

) ‖‖‖v
q,ss′

‖‖‖2

3

×
1
2

(
Γq,s + Γq,s′

)
(
𝜔q,s−𝜔q,s′

)2 + 1
4

(
Γq,s + Γq,s′

)2
(10)

where the mode specific heat is given by

Cq,s =
ℏ2𝜔2

q,s

kBT2
N̄q,s

(
N̄q,s + 1

)
(11)

where kB is the Boltzmann constant and N̄q,s = [exp(ℏ𝜔q,s∕kBT) − 1]−1is
the Bose–Einstein distribution. The above mode properties are calculated
by lattice dynamics in a large primitive cell with volume V. To describe the
thermal diffusivity of modes, thermal conductivity needs to be recast as
𝜅 = 1

VNq

∑
Cq,sDq,s, where the diffusivity of a vibrational mode reads

Dq,s =
∑

s′

𝜔q,s + 𝜔q,s′

2
(
Cq,s + Cq,s′

) (
Cq,s

𝜔q,s
+

Cq,s′

𝜔q,s′

) ‖‖‖v
q,ss′

‖‖‖2

3

×
1
2

(
Γq,s + Γq,s′

)
(
𝜔q,s−𝜔q,s′

)2 + 1
4

(
Γq,s + Γq,s′

)2
(12)

The calculation of the UF theory was carried out with the uniform
2 × 2 × 2 q-mesh, which was well converged with the tolerance in thermal
conductivity of ≈0.02 W m−1 K−1 compared with a 3 × 3 × 3 q-mesh. It
should be noted that the MD-based normal mode decomposition method
was used to calculate the mode linewidth here. The full-order scattering
was implicitly included in MD simulations. Hence, the thermal conductiv-
ity based on the unified theory using the extracted linewidths accounts for
the full-order anharmonicity. More details on the calculation of the mode
linewidth could be found in the literature.[40]

GAP-Driven MD. In the NEMD simulation, the size of the simulated
system was chosen as 30.0 Å × 30.0 Å × 144.7 Å. The periodic conditions
were used in the x and y directions, and the fixed boundary condition was
used in the z-direction. First of all, the entire structure was fully relaxed
by the NVT ensemble for 50 ps with a time step of 1 fs. Next, Langevin
thermostats with a temperature difference of 20 K were applied to reach
a steady-state temperature gradient and heat flux in a-Ga2O3. Then run
NEMD for 600 ps to collect time-averaged data. To prove that this simu-
lated system was sufficiently large to eliminate the side effects in the verti-
cal (z) direction, the MFP distribution of vibrational modes was calculated
at different temperatures (Figure S5, Supporting Information). It could be
clearly observed that the maximum MFP of dominant vibrational modes
(<10 THz) was less than the length of the simulated system (144.7 Å).
In this case, the size effects in the vertical direction could be ignored.[41]

Moreover, the melt-quench MD was performed in an NVT ensemble with
a Nosé–Hoover thermostat to generate the different models with setup
density. The melt-and-quench protocol used for GAP-MD is illustrated in
Figure S6 (Supporting Information).

Reference Data: All reference data for fitting the ML potential were
generated by the GAP-RSS method. At each iteration, the initial 10 000
randomized structures would be independently generated by the “build-
cell” algorithm as in the established ab initio random structure search-
ing framework.[42] The cells contained 4–20 gallium atoms and 6–30 oxy-
gen atoms. The most diverse 100 initial structures would be chosen by
leverage-score CUR and optimized by GAP-driven atomistic simulations
with a preconditioned LBFGS algorithm.[43] The selection of the train-
ing configurations from full trajectories involved a Boltzmann-biased flat
histogram and leverage-score CUR. Then the selected candidates for fit-
ting would be evaluated by single-point DFT calculations. In this work,
all DFT calculations were carried out with the Vienna Ab-Initio Simula-
tion Package,[44] using the Perdew–Burke–Erzenhof functional[45] and a
projector-augmented wave method.[46] A plane-wave basis cutoff, Gaus-
sian smearing width, and the halting criterion for the self-consistent field
iterations were set to 520, 0.05, and 10−7 eV, respectively. The automatic
k-mesh generation with L = 30 was implemented, where L is a parameter
to determine the number of divisions along each reciprocal lattice vector.

Listing 1: Definition of the descriptor string used in the GAP fit.
gap = {distance_Nb order = 2 compact_clusters = T cutoff = 8 co-

variance_type = ARD_SE theta_uniform = 1.0 sparse_method = uniform
n_sparse = 15 delta = 1 n_species = 2 species_Z = {31 8} add_species
= T: soap cutoff = 5 cutoff_transition_width = 1 covariance_type =
dot_product zeta = 4 delta = 0.2 atom_sigma = 0.5 l_max = 6 n_max =
10 n_sparse = 3000 sparse_method = cur_points radial_scaling = 0.5 f0
= 0.0 add_species = T: soap cutoff = 3 cutoff_transition_width = 1 covari-
ance_type = dot_product zeta = 4 delta = 0.2 atom_sigma = 0.3 l_max =
6 n_max = 10 n_sparse = 300 sparse_method = cur_points radial_scaling
= 0.5 f0 = 0.0 add_species = T}

Code Availability: The GAP code, which was used to carry out the
fitting of the potential and the validation shown throughout this work,
is freely available at https://github.com/libAtoms/GAP for noncommer-
cial research. The GAP-RSS code is freely available at https://github.com/
HongAo-Yang/ml_rss.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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